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Abstract

We evaluate the influence of Li-salt doping on the dynamics, capacitance, and struc-

ture of three ionic liquid electrolytes, [pyr14][TFSI], [pyr13][FSI], and [EMIM][BF4],

using molecular dynamics and polarizable force fields. In this respect, our focus is on

the properties of the electric double layer (EDL) formed by the electrolytes at the elec-

trode surface as a function of surface potential (Ψ). The rates of EDL formation are

found to be on the order of hundreds of picoseconds and only slightly influenced by the

addition of Li-salt. The EDLs of three electrolytes are shown to have different energy

storage capacities, which we relate to the EDL formation free energy. The differential

capacitance obtained from our computations exhibits asymmetry about the potential

of zero charge and is consistent with the camel-like profiles noted from mean field the-

ories and experiments on metallic electrodes. The introduction of Li-salt reduces the

noted asymmetry in the differential capacitance profile. Complementary experimental

capacitance measurements have been made on our three electrolytes in their neat forms

and with Li-salt. The measurements, performed on glassy carbon electrodes, produce

U-like profiles, and Li-salt doping is shown to strongly affect capacitance at high mag-

nitudes of Ψ. Differences in the theoretical and experimental shapes and magnitudes

of capacitance are rationalized in terms of the electrode surface and pseudocapacitive

effects. In both neat and Li-doped liquids, the details of the computational capacitance

profile are well described by Ψ-induced changes in the density and molecular orienta-

tion of ions in the molecular layer closest to the electrode. Our results suggest that the

addition of Li+ induces disorder in the EDL, which originates from the strong binding

of anions to Li+. An in-depth analysis of the distribution of Li+ in the EDL reveals

that it does not readily enter the molecular layer at the electrode surface, preferring

instead to be localized farther away from the surface in the second molecular layer.

This behavior is validated through an analysis of the free energy of Li+ solvation as a

function of distance from the electrode. Free energy wells are found to coincide with

localized concentrations of Li+, the depths of which increase with Ψ and suggest a

source of impedance for Li+ to reach the electrode. Finally, we make predictions of
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the specific energy at ideal graphite utilizing the computed capacitance and previously

derived electrochemical windows of the liquids.
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Introduction

Recent material advances1–3 have led to improvements in the energy density and delivery

of electrochemical devices.4 For supercapacitors, these utilize a liquid electrolyte to store

energy non-Faradaically at the electrode surface, with the electrolyte interfacial layer being

referred to as the electric double layer (EDL). As it stands, ionic liquids are appealing elec-

trolytes5–10 as they are more electrochemically stable than conventional organic electrolytes,

which allows the use of a large voltage bias for greater energy storage. Furthermore, ionic

liquids readily solvate Li+ and have shown stable operation in Li-ion11,12 and more ad-

vanced13–17 batteries, opening the door for the development of hybrid battery/capacitor

devices.18 Combined with the favorable properties of ionic liquid electrolytes, nanostructur-

ing the electrode interface to obtain high surface area and pores19–29 can lead to further

gains in capacitance, though more exact optimization in this way will require an in-depth

understanding of the interplay between the electrode and the EDL structure.

An important measure of the ability of a given electrolyte to store energy at an electrode

is the differential capacitance (Cdl), which is defined as the rate of change of surface charge

density (〈σ〉) with surface potential (〈Ψ〉), or ∂〈σ〉/∂〈Ψ〉. Cdl is a highly sensitive function

of electrolyte molecular size, weight, and shape and can thus provide information regarding

the structure of the EDL. In this respect, the tolerance of Cdl to electrolyte molecule char-

acteristics has been extensively investigated, particularly the dependence on chain length of

various imidizolium and pyrrolidinium cations, the size of fluorinated anions (e.g. [BF4]−

versus [PF6]−), and the weight of elemental halogen anions.5,7–10,30–32 Broadly speaking, the

results show that Cdl assumes characteristic profiles in different liquids, which include the

single maximum “bell,” the dual maxima “camel,” and single minimum “U” profiles,31 while

the magnitudes are generally3 between 5-20 µF/cm2. Furthermore, the potential of zero

charge (〈Ψ〉0) determined from these profiles is generally assumed to be at an extrema, ei-

ther the peak of the bell curve or the valley of the camel curve. Cdl often exhibits anisotropy
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about this point, which can be exacerbated by large disparities in cation and anion size.

As a means of obtaining a more detailed understanding of the interplay between EDL

structure and capacitance, several experimental approaches have been developed to quantify

molecular density and configuration at the electrode surface under potential bias. Both

X-ray reflectivity33–36 and atomic force microscopy37–42 yield general information on ion

distribution within the EDL. These methods have been used to characterize the layered

structure (i.e. alternating layers of cations and anions) of the EDL and, in specific cases, have

provided coarse information about surface ion configuration.39 Other methods, including X-

ray photoelectron spectroscopy43 and sum frequency generation spectroscopy44–48 allow the

resolution of finer details of surface ions, including average orientations of ion moieties with

respect to the surface.

With respect to theory, the mean field theory lattice gas model developed by Korny-

shev49 correlates ion structure to differential capacitance. The mean field approach expands

upon the earlier Guoy-Chapman-Stern model of the response of dilute electrolytes to elec-

trified interfaces to include the effect of ion size and density, which are important in dense

ionic systems. Through the incorporation of these effects, the mean field model success-

fully reproduces the characteristic “bell” and “camel” Cdl profiles noted in experiment,3,49–52

with differences between the packing efficiency of anions and cations at the electrode surface

leading to the aforementioned anisotropy about 〈Ψ〉0. However, because detailed molecular

correlation effects are difficult to include in the mean field model, the resulting Cdl captures

only the most general aspects of differential capacitance, though more complex theories that

incorporate ion correlation effects have been proposed.53

Alternatively, molecular dynamics (MD) simulations can provide atomic-level insight

into the behavior of ionic liquids at electrified interfaces. Such simulations have shown

success in detailing the structure of the EDL,54–56 the EDL capacitance as a function of

〈Ψ〉,25,57–65 and the influence of electrode structure (e.g. porosity and curvature) on EDL

behavior.20,23,24,26–28,66–74 Of note, recent united atom MD simulations have been used to
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explore the structural origin of Cdl for a number of ionic liquids.24,29,61,62,74,74,75 These sim-

ulations have successfully correlated Cdl to the structure of ions at the surface of ideal

electrodes.24,29,61,62,74,75

Despite the recent use of simulations to characterize the EDL structure and capacitance

at ideal interfaces, comparing such predictions to experiments is often difficult. In particular,

a number of factors related to the complex interactions between the electrode surface and

electrolyte can significantly influence the shape and magnitude of Cdl. For instance, elec-

trode composition has been shown to have a marked effect on the shape of Cdl, with metallic

electrodes yielding camel-type capacitance curves and glassy carbon providing U-shaped pro-

files.31 Such differences in Cdl can be traced to surface structure effects and the occurrence

of pseudocapacative processes, such as ion adsorption and decomposition. The influence of

pseudocapacitance can be particularly large, as demonstrated by recent EIS experiments

where order of magnitude variances in capacitance were noted at low frequencies due to ion

adsorption.10 As it currently stands, MD simulations do not account, fully, for surface struc-

ture and pseudocapacatiance effects, though preliminary efforts to include surface structure

have yielded promising results.74 However, we expect the simulations presented here to very

accurately account for effects occurring at ideal graphite electrodes. The behavior of the

EDL at ideal electrodes is an important precursor to the future inclusion of more complex

surface effects, which will entail extensive theoretical development.

The present work extends the use of MD simulations to the study of Li-doped ionic liquids

at electrified interfaces. In general, there have been few investigations on this topic, despite

its importance for batteries and hybrid battery/capacitor devices.76,77 This is related perhaps

to the complex energetics of Li+ solvated in ionic liquids, which can be difficult to represent

with conventional force fields.78,79 These issues are overcome here by using the atomic polar-

izable potential for liquids, electrolytes, and polymers (APPLE&P),80–82 which accurately

captures the energetics and dynamics of a range of Li-doped ionic liquids.78,79,83,84 Further-

more, the use of APPLE&P allows the electrolyte to polarize in response to an electrified
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interface, which has been shown to impact both the EDL structure and capacitance.85 We

perform these simulations on three ionic liquids of electrochemical interest,11–17 N -methyl-N -

butylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([pyr14][TFSI]), N -methyl-N -propyl-

pyrrolidinium bis(fluorosulfonyl)imide ([pyr13][FSI]), and 1-ethyl-3-methylimidazolium boron

tetrafluoride ([EMIM][BF4]), in both their neat and Li-doped form. The simulations are per-

formed using a model capacitor system with two electrodes (see Figure 1) having a constant

potential difference (∆Ψ) imposed by dynamically updating surface charge throughout the

simulation. We investigate these liquids for 0 V ≤ ∆Ψ ≤ 4.2 V, which is approximately

within the electrochemical windows of the electrolytes, and for Li-salt mole fractions (xLi)

of 0.0 and 0.2.

As an outline of this work, we first evaluate the influence of Li+ on the most general

aspects of the EDL evolved at the electrode surface, including formation times, energetic

content, and differential capacitance, where differential capacitance is computed with a mod-

ified version of recently developed fluctuation formulas.56,85 Additionally, we make, as far as

we know, the first direct comparisons between experiment and simulations for differential

capacitance. We believe that such direct comparisons are important first steps towards rec-

onciling potential differences and will provide direction for future work. The properties are

then correlated to the molecular structure of the EDL by analyzing the ion density and

configuration at the interface. We complement the structural analysis by a detailed exami-

nation of the distribution, binding and solvation free energy of Li+ in the EDL. Finally, as

this work is fourth in a series78,79,86 of papers focusing on these particular electrolytes, we

summarize a range of computed properties, relating to the bulk, electronic structure, and

interfacial. Using these properties we make predictions of supercapacitor specific energy on

ideal electrodes.
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Methods

Ionic Liquid Interatomic Potential

We employ the atomic polarizable potential for liquids, electrolytes, and polymers (AP-

PLE&P) as parameterized by Borodin and coworkers80–82 for the ionic liquids of interest in

the present work. Through extensive testing,79,81,83,84,87 APPLE&P has been shown to ac-

curately capture the thermodynamic behavior of a vast array of ionic liquids as well as ionic

liquid systems containing Li-salt. While many of the energetic interactions in APPLE&P

are standard to molecular dynamics simulations, including harmonic bonded interactions,

the exponential-6 Buckingham potential, and Coulomb interactions between point charges,

APPLE&P includes a self-consistent measure of atomic polarization. Each atom is assigned

an atomic polarizability (α) which yields an atomic dipole moment (µ) proportional to the

electric field, µi = αE(ri). To obtain the induced dipoles, one must iteratively update the

electric field with induced dipole contributions until the total polarization energy,

Upol = −1

2

∑
i

µi · E0(ri), (1)

where E0(ri) is the electrostatic field contribution from permanent charges only, converges.

Further details of the force field as used for these ionic liquids can be found elsewhere.79–81

Electrode Model

The model capacitor employed here is composed of two electrodes, between which is

ionic liquid, as shown in Figure 1. The use of two electrodes is a practical means of creating

electrified interfaces while maintaining charge neutrality (i.e each system is composed of a

negative and positive electrode that are oppositely charged). The geometry of our model
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capacitor is taken to be that of a slab, with the system being periodic in the (x,y), or in-

plane, directions and having a finite thickness Lz in the z-direction. The region beyond

the electrodes in the z-direction is assumed to be an infinite vacuum. Problematically,

standard long range electrostatic summation techniques, namely the Ewald summation and

particle-mesh methods, assume the system has full three dimensional periodicity, which is

not appropriate for slab geometries employed here. To correct for this, there are exact forms

of the two dimensional Ewald summation88 as well as corrections to the three dimensional

Ewald summation that approximate slab conditions.89 As described in detail elsewhere,85

we have tested both approaches in slab systems and have found the correction to the three

dimensional Ewald to be in excellent agreement with the two dimensional Ewald summation.

The correction method, as originally described by Yeh and coworkers,89 assumes a system of

slab geometry being separated by a suitable distance from its periodic image normal to the

slab such that mutual slab-slab interactions are approximately dipolar. Though originally

developed for systems of interacting point charges, we have extended this correction to

account for the long-range interaction of point charges with the atomic dipoles produced

from the polarizable force field, yielding

U2D
corr =

1

2ε0
M2

z , (2)

where ε0 is the permittivity of free space andMz is the net dipole moment in the z-direction,∑N
i=1 (qizi + µzi).

The electrodes are treated as rigid bodies, with the positions of the electrode atoms held

fixed throughout the simulations. The electrode atoms interact with the ionic liquids through

both repulsive dispersive interactions, as described by the Buckingham potential, as well as

through electrostatic interactions. To approximate the electrode surface as metallic, we follow

the convention90 of treating charges on electrode atoms as Gaussians with a half maximum

width of 0.5; the electrode atoms do not have induced dipoles. A constant potential difference
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(∆Ψ) is maintained between the electrodes during a given simulation. This is achieved

by dynamically distributing electrode charge using a modified version of a procedure first

implemented by Siepmann90 and later adapted to interactions between electrified interfaces

and organic and ionic liquid electrolytes.61,63,91 In this approach the total Hamiltonian, H,

is given by

H = UK + URD + UES − A|σ|∆Ψ, (3)

where UK is kinetic energy, URD is the repulsive-dispersive energy, UES is the total elec-

trostatic energy, A is the electrode surface area, |σ| is the absolute value of the electrode

surface charge density on either the positive (σ+) or negative (σ−) electrode (σ+ = −σ−),

and ∆Ψ = Ψ+ − Ψ− is the potential difference set between the positive (Ψ+) and negative

(Ψ−) electrodes. As detailed elsewhere,85 the charges on the electrode atoms are updated

under the constraint that the charge on the positive electrode balances that on the negative

electrode until ∂H/∂q+
i = ∂H/∂q−i = 0, where q+

i and q−i are charges on individual atoms in

the positive or negative electrode.

EDL Thermodynamics

We now derive several useful thermodynamic relationships for the EDL free energy and

capacitance that can be evaluated from MD simulations that employ our model capacitor

with the constant-∆Ψ condition. The Helmholtz free energy of our model capacitor, F, can

be written as, F = −β−1ln (Ω), where β is defined as the inverse product of Boltzmann’s

constant and temperature (1/kbT ), H is the Hamiltonian of our system defined in Eq. 3, and

Ω is the partition function of the system, which is given by the integral of e−βH over phase

space. The partial derivative of F with respect to ∆Ψ is then given by,

∂F

∂∆Ψ
= −A〈|σ|〉. (4)
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By integrating this function over ∆Ψ, one may obtain the free energy of EDL formation on

both electrodes.

It is more informative, however, to obtain changes in F for the charging of individual

electrode surfaces (i.e. separating the energetic contributions of the positive and negative

electrodes), or ∂F/∂〈Ψ〉. Such a value can be expanded as

∂F

∂〈Ψ〉
=

∂F

∂∆Ψ

∂∆Ψ

∂〈Ψ〉
. (5)

Taking the derivative of the ensemble average of surface potential difference, given by

〈Ψ〉 =
∫

Ψe−βHdr/
∫
e−βHdr, where β is the inverse product of temperature with Boltz-

mann’s constant and r represents the atomic configuration of our system, with respect to

∆Ψ leads to [
∂∆Ψ

∂〈Ψ〉

]−1

=

〈
∂Ψ

∂∆Ψ

〉
+ βA 〈|σ|δΨ〉 . (6)

For the systems of interest in the present work, we have found numerically that 〈∂Ψ/∂∆Ψ〉,

representing the instantaneous change of electrode potential with a change in potential dif-

ference, is approximately ±0.5, while the fluctuation of potential, δΨ = Ψ−〈Ψ〉, and surface

charge can be easily obtained during the molecular dynamics simulation. Combining Eq. 5

and Eq. 6, one obtains

∆F edl =

∫ 〈Ψ〉f
〈Ψ〉0

∂F

∂∆Ψ

[〈
∂Ψ

∂∆Ψ

〉
+ βA〈|σ|δΨ〉

]−1

d〈Ψ〉, (7)

where ∆F edl is the potential dependent EDL formation free energy difference between the

potential of zero charge, 〈Ψ〉0 and 〈Ψ〉f .

As detailed elsewhere,56,85 fluctuation formulas can be derived to define Cdl as a function

of 〈Ψ〉. As with free energy before, one may take the derivative of the average surface charge,
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〈σ〉 =
∫
σe−βHdr/

∫
e−βHdr, with respect to ∆Ψ to approximately yield

∂〈σ〉
∂∆Ψ

=

〈
∂σ

∂∆Ψ

〉
+ βA 〈|σ|δσ〉 , (8)

where 〈∂σ/∂∆Ψ〉 is again attributed to implicit dependencies of charge on the defined value

of ∆Ψ.

This represents the total differential capacitance of our two-electrode, model capacitor.

The capacitance of an isolated electrode is valuable for understanding the comparative be-

havior of EDLs at the positive and negative electrodes. To obtain such a quantity, we can

write ∂〈σ〉/∂〈Ψ〉 = ∂〈σ〉/∂∆Ψ× ∂∆Ψ/∂〈Ψ〉, which, when combined with Eq. 6, gives

∂〈σ〉
∂〈Ψ〉

=
∂〈σ〉
∂∆Ψ

[〈
∂Ψ

∂∆Ψ

〉
+ βA 〈|σ|δΨ〉

]−1

. (9)

The complete derivation of this equation is described elsewhere.85

As a final note on the thermodynamic expressions, one may leverage Eq. 8 to rewrite

∆F edl in terms of surface charge. Starting with ∂F/∂〈σ〉 = ∂F/∂∆Ψ × ∂∆Ψ/∂〈σ〉, the

charge dependent free energy of EDL formation is given as

∆F edl =

∫ 〈σ〉f
0

∂F

∂∆Ψ

[〈
∂σ

∂∆Ψ

〉
+ βA 〈|σ|δσ〉

]−1

d〈σ〉, (10)

where ∆F edl is the free energy difference between the system having, on average, no electrode

charge to a value of 〈σ〉f .

Solvation Free Energy

To understand the interplay between surface structure and Li-salt doping, we perform a

free energy analysis on Li+ solvation in the EDL as a function of ∆z and 〈Ψ〉. In general,

the solvation free energy of a given molecule is computed along a thermodynamic cycle that
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takes the molecule from a gaseous state to a solvated state in a liquid bath. However, the

solvation of a single ion, like Li+, into an electrolyte leads to a charge imbalance, which can

lead to errors that makes the determination of solvation free energy difficult. To overcome

this difficulty, we compute the free energy using a thermodynamic cycle that solvates Li+

into the electrolyte of our model capacitor system and simultaneously balances the resulting

charge by countercharging an electrode. The simplest form of such a cycle is

F s(0) = ∆F Li0(g)→Li0(l) + ∆F
Li0(l)→Li+(l)
σ=0→σ=−1 −∆F edl. (11)

We first compute the solvation free energy of a neutral Li0 from a gaseous state to a sol-

vated state in the electrolyte of our model capacitor system, given by ∆F Li0(g)→Li0(l). This

interaction is mediated through repulsive-dispersive interactions and the response of Li+

polarizability to the electrolyte. To ensure the Li0 is solvated into the bulk-like region, we

constrain the trajectory of Li+ over the course of the MD simulation to ensure the value of

z is zero, or at the midpoint between our electrodes (such a procedure is later validated by

our results, which show a constant value of solvation free energy when ∆z > 20 Å from the

electrode surface). We then calculate the free energy of charging Li0 to Li+ while simultane-

ously balancing the ion by charging one of the electrodes to a value of -1 a.u., ∆F
Li0(l)→Li+(l)
σ=0→σ=−1 ,

which overcomes the charge imbalance issues encountered when solvating an ion into a bulk

liquid system. The solvation free energy of Li+ at z = 0, ∆F s(0), can then be obtained

by removing ∆F edl induced from charging the electrode through Eq. 10. We later denote

∆F
Li0(l)→Li+(l)
σ=0→σ=−1 −∆F edl as simply ∆F Li0(l)→Li+(l), or the free energy of charging the Li+.

To understand barriers to Li+ translation within the EDL, we perform additional com-

putations to determine the change in free energy as a function of z, or distance from the

electrode, ∆z. We first perform MD simulations having Li+ constrained to various values

of z throughout the EDL and, for each simulation, determine the average value of force on

Li+ in the z-direction, 〈fLiz 〉. The formalism known as the “blue-moon” ensemble92 relates
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the constrained forces to the derivative in free energy with respect to z-direction translation.

This results in our z-dependent solvation free energy taking the form

F s(z) = F s(0)−
∫ z

0

〈fLi+z 〉|z′dz′, (12)

where 〈fLi+z 〉|z′ represents the z-directional force when Li+ is constrained to z′. Similar

approaches without constraints have been employed successfully to study ion free energetics

within the EDL.77,93–95 However, our use of a constraint-based method allows a better probe

of regions where Li+ density is negligible over the course of a standard MD simulation, which

can lead to more accurate averaging of 〈fLiz 〉|z′

Molecular Dynamics Simulations

We have performed MD simulations on six ionic liquid systems in total, which include

[pyr14][TFSI], [pyr13][FSI], and [EMIM][BF4] having xLi values of 0.0 and 0.2. Our simula-

tions employ three-layer graphite electrodes interfaced with the ionic liquids; the normal of

the basal plane defines the z-direction. The distance between the electrode surfaces is 10 nm,

as shown in Figure 1, which our tests have indicated results in practically non-interacting

double layers; the in-plane, periodic dimensions are 2.46 nm × 2.58 nm. The systems are

constructed by first equilibrating a large ionic liquid bath to the desired T and P conditions.

Upon reaching equilibrium, the electrodes are inserted into the bath, and a stoichiometric

number of ionic liquid pairs are removed to create a 3.14 Å vacuum buffer region around the

electrodes. The system is then allowed to equilibrate under isobaric-isothermal conditions

(NPT) for 10 ns, after which the average number of ion pairs in the electrode region can be

obtained. We then generate electrode systems with slab geometry (periodic in the x and y

directions only) filled with the number of ionic liquid pairs determined from the bath simu-

lations. For reference, both the net system size and total simulation lengths are provided in
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Table 1.

The MD simulations in the present work are performed at T = 363 K, which is elevated

when compare to most experiments on capacitors. This is necessary, however, to increase

the glassy dynamics of Li-doped ionic liquids so that the EDL structure and capitative be-

havior can be suitably represented on MD time-scales. Time-integration is performed by the

rRESPA96 algorithm and a timestep of 3.0 fs, with the multiple time step partitions being

provided in a previous work.79 The long range electrostatics are performed with a coupled

Ewald summation/reaction field formalism, whereby charge-charge and charge-dipole inter-

actions are performed with an Ewald summation and dipole-dipole interactions are evaluated

using a reaction field. The dipoles are updated self-consistently until the net dipole energy

changes by less than 10−8 kcal/mol. Local non-bonded interactions, which include explicit

Coulomb and repulsive-dispersive interactions, are performed within a cutoff of 12 Å for the

[pyr14][TFSI] and the [pyr13][FSI] systems and 11 Å for the [EMIM][BF4] systems. The

electrode charge is updated every five time steps in the outermost rRESPA parition with the

constant potential formalism such that the error in ∆Ψ is less than 0.05 V.

Experimental Techniques

The [pyr14][TFSI] (99%), [pyr13][FSI] (99.9%), and [EMIM][BF4] were purchased from

IOLITEC, Solvionic, and Fliua Analytical respectively. The corresponding salt, Li[TFSI]

(>99.0%) and Li[BF4] (99.998%) were purchased from Aldrich, and Li[FSI] (99%) was pur-

chased from Sarchem Laboratories. All the ionic liquids and the corresponding salts were

dried at 120oC under vacuum for 10 hours before use. The differential capacitance measure-

ments were completed in a Swagelok (USA) cell using glassy carbon (purchased from BAS) as

working electrode, a coiled platinum (Pt) wire as a counter electrode, and a silver (Ag) wire as

reference. The glassy carbon electrode was first polished following the procedures suggested

from the vendor. All the cell components were dried at 90oC under vacuum for 2 hours. The
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cell was then assembled and the ionic liquids were introduced in a the glove box. A Solartron

1287 potentiostat/galvanostat in combination with a model 1255B frequency response an-

alyzer was used for cyclic voltammetry (CV) and electrochemical impedance spectroscopy

(EIS) experiments (performed at room temperature). AC signal of 10 mV amplitude with

frequency 1000 Hz at different DC voltage was used for the potential-dependent capacitance

measurement. The measured impedance was normalized to the geometric electrode area.

EDL Formation and Capacitance

Formation Times

The dynamics of EDL formation can be determined by considering the evolution of σ

from a ∆Ψ = 0 to a ∆Ψ > 0 state as a function of time. We initially equilibrate our

ionic liquid systems at 363 K and ∆Ψ = 0 V for 10 ns. Using the system so equilibrated,

we impose a non-zero ∆Ψ and track surface charge density until it converges, as shown in

Figure 2 for ionic liquids exposed to electrodes having ∆Ψ values of 2.1 and 4.2 V. For

the potentials investigated, the surface charge reaches an equilibrium value in less that 1

nanosecond, though the exact value appears to be dependent on Li-salt content. We quantify

the formation rate in Table 2 through a characteristic formation time, τedl, that is obtained

from a simple fit of surface charge, given by σ = 〈σ〉(1 − e−t/τedl), where 〈σ〉 is the average

value of surface charge density and t is time. A comparison of τedl across the ionic liquid

systems shows that the formation time in [pyr14][TFSI] > [pyr13][FSI] > [EMIM][BF4].

Furthermore, both surface potential and Li-salt doping have a strong effect on the charging

times. The difference in the value of τedl at ∆Ψ = 2.1 V versus 4.2 V changes from 193 ps to

318 ps, 64 ps to 216 ps, and 33 to 48 ps for [pyr14][TFSI], [pyr13][FSI], and [EMIM][BF4],

respectively. The effect of Li-salt doping is to increase τedl by a factor of ∼2-5 with ∆Ψ =

2.1 V and ∼ 1.2 − 3 with ∆Ψ = 4.2 V, which suggests the effect of Li+ on EDL formation
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is reduced under a larger driving force, ∆Ψ.

The formation times can be interpreted on the basis of ion diffusion coefficients. At

∆Ψ = 0 V and xLi = 0.0, the diffusion coefficients of cations and anions in our model capac-

itor system are 1.5 and 1.3; 1.3 and 1.8; and 3.3 and 2.0 ×10−10m2/s for the [pyr14][TFSI],

[pyr13][FSI], and [EMIM][BF4] systems, respectively. All diffusion measures at these condi-

tions are within 30 % of their bulk liquid values. The formation times trend inversely to the

diffusion coefficients, implying liquids with higher diffusion coefficients exhibit faster EDL

formation times and thereby faster charging. At ∆Ψ = 0 V and xLi = 0.2, the diffusion

coefficients of cations, anions, and Li+ in our model capacitor system are 0.92, 0.68, and

0.21; 1.2, 1.2, and 0.6; and 1.7, 1.1, and 0.8 ×10−10m2/s for the [pyr14][TFSI], [pyr13][FSI],

and [EMIM][BF4] systems, respectively. Diffusion in the Li-doped systems is within 40 %

of bulk values and lower than that in the xLi = 0.0 systems. The smaller diffusion coef-

ficients correspond to the larger EDL formation times in Li-doped systems. As a note of

caution, simulation length heavily plays into the accurate measurement of diffusion, and the

40-75 ns duration of the capacitance simulations performed in the present work are typically

shorter than our previous simulations for the bulk diffusion of these systems.79 Therefore,

the diffusion coefficients reported in the present work should be considered only as a means

of describing trends in EDL formation rates, as simulation length has an unquantified con-

tribution to their errors.

Differential Capacitance

The differential capacitance of our neat and Li-doped ionic liquid systems is shown in

Figure 3. For all three liquids at ∆Ψ ≤ 4.2 V, we find that Cdl ranges from 3 to 6 µF/cm2,

depending on 〈Ψ〉. The average values of Cdl are markedly similar for our three liquids, 4.4,

4.5, and 4.5 µF/cm2 for neat [pyr14][TFSI], [pyr13][FSI], and [EMIM][BF4], respectively.

At high values of 〈Ψ〉, we see, as expected, lower values of differential capacitance. These
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results agree well with previous MD simulations on ionic liquids,24,61,62 which yield average

values between 4-6 µF/cm2. Comparison of simulations results with experiment, however,

can be challenging, with ionic liquids on various electrode materials and probed with various

techniques yielding very different values of Cdl. The general range of experimentally deter-

mined differential capacitance of ionic liquids spans 2-20 µF/cm2,5,7–10,97–99 which bounds

our results. The probable explanation for higher experimental values and variances of Cdl are

pseudo-capitative processes that include, namely, ion adsorption onto the electrode. Our MD

simulations do not currently account for these effects but rather provide an ideal measure of

the EDL mediated capacitance on a perfect surface.

Addressing the ionic liquids systems having xLi = 0, as shown in Figure 3 a,c, and e, we see

that each system displays a distinct Cdl profile. For [pyr14][TFSI] and [pyr13][FSI], we note

that Cdl assumes the characteristic “camel” shape, with [pyr14][TFSI] having a large peak

occurring between 0 V and 1V and [pyr13][FSI] having a larger peak differential capacitance

at negative potentials. Both of these features agree with previous united atom simulations

of neat [pyr13][TFSI] and [pyr13][FSI] ionic liquids.24,61,62 On the other hand, results for

[EMIM][BF4] are only slightly asymmetric, with an incrementally higher maximum value of

Cdl at negative potentials. For the systems having Li-salt, we see subtle differences in the

shapes of Cdl in all three systems, while the average magnitudes of Cdl are not significantly

different from those of the xLi = 0 systems. The primary impact of Li-doping on Cdl appears

to be a softening of the asymmetry between positive and negative potentials, the origin of

which will be probed later through a structural analysis. In all cases, we find that Cdl roughly

has a minima at 〈Ψ〉0, and this corresponds to the midpoint of the antisymmetric “camel”

profile.

Experimental measurements, complimentary to our simulations, are shown in Figure 4

for the three ionic liquids of interest in the present work in both the neat form and having

xLi = 0.2. For the neat systems, Cdl is U-like in character and has an average magnitude of

13.9, 27.2, and 9.9 µF/cm2 for [pyr14][TFSI], [pyr13][FSI], and [EMIM][BF4], respectively.
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Similarly, for the Li-doped systems, differential capacitance adopts the U-shaped profile and

has an average magnitude of 16.0, 17.4, and 16.5 µF/cm2 for [pyr14][TFSI], [pyr13][FSI], and

[EMIM][BF4], respectively. The addition of Li-salt appears to generally increase capacitance

at higher surface potentials, potentially due to plating or Li-mediated pseudo-capacitive

processes, effects which are not captured in our simulations. The major exception to this is

found in [pyr13][FSI] system, which exhibits a slight reduction in capacitance upon addition

of Li-salt.

Direct comparisons between computational and experimental measures of differential

capacitance are not often attempted. Reconciling these data is necessary to make progress

in understanding these systems. We provide such a comparison here as an initial step toward

understanding fundamental differences between our simulations and experiment, which will

assist the future development of more robust, quantitative simulations of capacitance. As

an apparent difference, the basic shape of capacitance is camel-like in our computational

results and U-like in our experimental results. It is highly likely that this is primarily an

electrode mediated effect as, for some [TFSI]-based electrolytes, glassy carbon electrodes

have been shown31 to lead to more U-like Cdl profiles, while metallic electrodes produce

capacitance profiles that are more camel-like. As we treat our model electrode as an ideal

metal, the camel-like character is dominant and reasonable. Additionally, our computational

differential capacitance provides a lower bound to the experimental measurements. Surface

roughness, such as that present on such glassy carbon surfaces, has been shown in previous

studies to lead to increases in capacitance.29 Our theoretical results and experiments are

most similar at low values of surface potential, where one would expect the smallest influence

from pseudocapacative effects (e.g ion adsorption, Li-plating and decomposition). At large

magnitudes of surface potential, such processes certainly influence the value of capacitance.

Both surface structure and absorption effects must be included to expect more quantitative

measures of capacitance.
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Free Energy of Formation

Leveraging the fluctuations obtained from our differential capacitance computations, we

apply Eq. 7 to obtain ∆F edl, as shown in Figure 5, which, along with 〈σ〉, is displayed as a

function of 〈Ψ〉 for our electrolytes in their neat form. Each of the ∆F edl profiles exhibits

a quasi-parabolic behavior as a function of 〈Ψ〉 and are predominantly symmetric. The

fact that the asymmetry in Cdl does not strongly manifest in these systems in not entirely

surprising as, at a given value of ∆Ψ, the difference in Cdl between the two electrodes is

generally < 1 µF/cm2. The relative ordering of ∆F edl between the three liquids appears to

change depending on the 〈Ψ〉 range. At 〈Ψ〉 < 0.0 V, the value of ∆F edl in [EMIM][BF4]

< [pyr14][TFSI] < [pyr13][FSI] until 〈Ψ〉 ≤ −1.5 V, where [pyr13][FSI] rapidly overtakes

the other liquids to have the smallest value of ∆F edl at 〈Ψ〉 ∼ −2.1 V. At 〈Ψ〉 > 0.0 V,

we see similar values of ∆F edl between the systems, though [EMIM][BF4] is slightly higher,

until 〈Ψ〉 ∼ 1 V, where with increasing potential ∆F edl in [pyr13][FSI] < [EMIM][BF4] <

[pyr14][TFSI]. Of course, a liquid having a smaller value ∆F edl is generally implied from

larger values of 〈σ〉 across a potential range, which follows from Eq. 4. To this point, at

the extreme values of 〈Ψ〉, ∼ ±2.1 V , |〈|σ|〉| is found to be 9.11, 9.99, and 9.52 µC/cm2 for

[pyr14][TFSI], [pyr13][FSI], and [EMIM][BF4], respectively, which reflects the aforementioned

the order of ∆F edl at these potentials. In the case of liquids having Li-salt, we note that

there are only slight changes in the free energetics, with the energies of the three liquids

again having magnitudes and orderings similar to those of the neat system.

EDL Structure

Ion Density Profiles

20



As an initial means of characterizing the influence of Li-doping on the structure of the

EDL, we now look at average ion density profiles as a function of distance from the electrode,

ρ(∆z). In this way, ρ(∆z) is computed on a per atom basis and normalized by the total

number of ion atoms in the simulation cell. Though we have performed computations with

various values of ∆Ψ, we choose representative values that give an adequate sampling of the

structures observed in our simulations, namely the equipotential condition, ∆Ψ = 0, and

our upper limit of potential difference, ∆Ψ = 4.2 V. In the ion density profiles in Figure 6,

the total ion density is given as a black dashed and double dotted line, the cation density

is given as a blue dashed line, anion density is given as a red dashed-dotted line, and the

density of Li+ is given as a solid green line. Furthermore, we present only neat and Li-doped

[pyr14][TFSI] in Figure 6 as the prototypical case for all of our electrolytes, with the few

differences in EDL structure between the electrolytes being explicitly mentioned. The full

ion density profiles for [pyr13][FSI] and [EMIM][BF4] can be found in Figures S1 and S2,

respectively, of the supporting information.100

For the case of ∆Ψ = 0, as shown in Figure 6 a, there is a reasonable degree of fluctuation

in ρ(∆z) near the surface, which drops off to bulk densities at ∆z∼15 nm. The density fluctu-

ations under no potential bias imply that the layer of ions at the surface is enriched in either

cations or anions, which will be later characterized by looking at surface ion populations.

The density fluctuations under no potential bias could represent the response to ion ordering

or enrichment in a preferred ion at the electrode surface. In this respect, we note that the

surface ions should be encompassed within the first minimum in total ion density, which is

< 5− 7 Å, depending on the liquid. The addition of Li-salt, as shown in Figure 6 b, results

in only nominal changes to the surface ion layer. In fact, there is practically no trace of Li+

within the surface ion layer itself, although a strong, though asymmetric, peak is present

in the second ion layer near the interface of the first and second layers, occurring between

4-10 Å. This is in qualitative agreement with trends noted from previous MD simulations of

the EDL of organic and ionic liquid electrolytes,62,77 with strong solvation effects presenting
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a barrier to Li+ entering the surface layer. This also reinforces the previously mentioned

independence of 〈Ψ〉0 to Li-doping, as the surface layer nearest the electrode is relatively

unchanged. Aside from the peak in the second ion layer, Li+ is distributed almost evenly

throughout the ∆z>10 Å region. The slight variations in Li+ density in this region, as can

be noted clearly in the total ion density profile, are due to strong and long-lived Li+/Anion

binding and network formation noted in previous works.78,79

The segregation of cations and anions into distinct layers and the densification of the

layers in close proximity to the cathode is shown in the density profiles of Figure 6 c and

d. In the case of the neat liquid in Figure 6 c, we see the surface ion layer is predominantly

composed of anions, which leads to strong fluctuations in density that drop off to the bulk

density by ∆z∼25 Å, though small fluctuations in density can be seen to persist up to 50 Å.

The addition of Li-salt disrupts layering in the EDL, leading to an uneven total ion density

profile, as shown in Figure 6 d. As with the ∆Ψ = 0 V case, Li+ is again asymmetrically

distributed within the second ion layer, being preferentially localized nearer to the first layer,

and is not present in the first ion layer. For [pyr14][TFSI] in Figure 6 c and [pyr13][FSI]

in Figure S1 c, beyond this localization a region void of Li+ develops at ∆z ∼ 8 − 14 Å,

followed by a diffuse accumulation at 15-25 Å. For [EMIM][BF4], shown in Figure S2 c,

this void region is not present, and, aside from the initial peak in the second ion layer, Li+

appears to be evenly distributed through the EDL.

Ionic liquids near the anode exhibit a layered order akin to that at cathode, as shown

in Figure 6 e and f, with primarily cations in the surface ion layer. For the neat system,

as shown in Figure 6 e, the fluctuations in ion density again dissipate after ∆z∼25 Å, with

the exception being the long range fluctuations of [pyr13][FSI] that dissipate after ∆z ∼40

Å, as shown in Figure S1 e. As can be clearly noted, the second ion layer, which here is a

cation layer, is more prominent than the second ion layer at the cathode. The introduction

of Li-salt, given in Figure 6 f, disrupts the long-range ordering of ions and leads to abrupt

peaks in the total ion density that suggest a large accumulation of Li+ in the EDL. In this
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case it appears that Li+ is asymmetrically distributed with a preference for residing near

the interface of the second and third ion layers. Additionally, we see the previously noted

trend of no Li+ in the surface ion layer. Instead, and for all three liquids (Figure S1 f and

S2 f), the Li+ density is localized primarily within the anion layers, and each anion layer has

an associated localization of Li+ density. Altogether the EDL at the anode appears to have

more Li+ concentration than at the cathode. To elaborate on the structures and energetic

trends noted here, we later investigate the bonding and free energetics of Li+ in the double

layer.

Surface Ion Layer

To provide a more descriptive measure of surface structure behavior beyond the global

ion density profiles, we now focus on the molecular ion layer at the surface itself. We define

this layer based on the density of the ion centers of mass, shown in Figures S3-S5 of the

supplemental material,100 with the initial accumulation of ions occurring within 4-6 Å for

all of our electrolytes across the range of ∆Ψ probed here. To understand the composition

of this layer, we compute the average surface ion density (N) attributed to this layer as a

function of 〈Ψ〉− 〈Ψ〉0. The value of N is determined from the product of the integral of the

aforementioned density profiles of ion centers of mass from the electrode surface to the first

minimum with the surface area of the electrode, and this procedure is performed for both

cations and anions, with the results being shown in Figure 7 a, c, and e.

The value of N for the three liquids displays the same general behavior of more cations at

lower potential and more anions at higher potential; however, there are various nuances that

should be noted. At 〈Ψ〉0, we see that [pyr14][TFSI] and [pyr13][FSI] have more cations in

the surface layer, while [EMIM][BF4] has almost an equal number of each ion. This suggests

better packing of the pyrrolidinium cations with the graphite surface than the imide anion

interactions, possibly through more configurational freedom. The near equal amount of
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[BF4] and [EMIM] at the surface could be attributed to their relatively simple structures

and similar, small size. At the extreme of negative potential, 〈Ψ〉 ∼ −2 V, the population

of [TFSI] and [FSI] at the surface is near negligible, while [BF4] has only been reduced to

half its value at 〈Ψ〉0. On the other hand, at 〈Ψ〉 ∼ 2 V we see a mixture of anions and,

persistently, cations at the surface for all three liquids. The addition of Li+ salt has limited

effect on the value of N , which agrees with the ion density profiles showing no significant

Li+ density in the surface ion layer. Finally, the average number of ions in the surface layer

increases with decreasing ion size, with N in [EMIM][BF4] > [pyr13][FSI] > [pyr14][TFSI].

It has been determined previously that the surface layer governs the shape of differential

capacitance.61,74,75 To connect Cdl to the number of ions in the surface layer, we look at

the change in surface ion density, δN , as a function of 〈Ψ〉. In this respect, we define δN

as (〈Ψ〉 − 〈Ψ〉0)/|〈Ψ〉 − 〈Ψ〉0|(N− −N+ −N−0 +N+
0 ), which yields the net accumulation of

anions and removal of cations at the cathode and vice versa for the anode. This measure

provides a pseudo-parabolic curve, as shown in Figure 7 b, d, and f, that reveals an interesting

asymmetry for the considered electrolytes. In the case of [pyr14][TFSI], we see that the value

of δN at the maximum positive potential is larger than at the minimum negative potential,

which concurs with our finding that Cdl is larger at positive potentials for [pyr14][TFSI].

For [pyr13][FSI], we see the opposite asymmetry, with δN reaching larger values at negative

potential, which again agrees with the previously noted larger values of Cdl at negative

potentials, as well as the findings of previous simulations on [FSI] containing ionic liquids.75

For [EMIM][BF4], we note a nearly symmetric δN curve that coincides with a symmetric

differential capacitance. As with N , the addition of Li-salt does not significantly change the

trends in δN .

As a means of understanding the structural origin of changes in N and δN with potential,

we look to the molecular configuration of cations and anions in the surface ion layer as a

function of 〈Ψ〉−〈Ψ〉0, with representative configurations being shown in Figure S7. We first

look at the distribution of the angle between the cation ring normal and the electrode surface
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normal, given in Figure S8. In this respect, we find that the cations at the surface can take

one of two distinct states: a low angle state having the ring interact with the surface (denoted

planar) and a high angle state more likely to have the chain interact with the surface (denoted

perpendicular). For [pyr14], [pyr13], and [EMIM], we find the average angle of planar cations

to be ∼8o, ∼8o, and ∼7o, respectively. Perpendicular cations are separated from planar

cations by a minimum in the angle configuration space and are diffusely distributed through

angles > 30o and > 45o for [pyr14] and [pyr13], respectively. [EMIM] does not have a clearly

preferred perpendicular state; so we define perpendicular as > 30o, which separates planar

cations from larger angles (see Figure S8).

Mapping out the percent of planar cations in the ion surface layer as a function of

potential, we see that [EMIM] is ∼ 67% planar, a value virtually independent of 〈Ψ〉. On

the other hand [pyr14] and [pyr13] have few planar cations at low potential (∼16-20 %),

which rapidly increases to almost 50 % planar at our lowest potential. Again, there are no

large systematic differences between neat systems and those having Li+. The prevalence of

[pyr14] and [pyr13] at the surface across the range of potential, as given by N , is due to their

two favorable states. The planar configuration, which exposes the positive charge center

of the ring to the surface, is favorable at the anode, while the perpendicular configuration,

which allows the cation to remain in the surface ion layer without having its charge center

exposed to the electrode, is favored at the cathode. Alternatively, [EMIM] predominantly

assumes a planar configuration with a positive charge center exposed to the electrode. While

this configuration at the anode is favorable, the prevalence of [EMIM] at the cathode is

anomalous. We therefore look to the behavior of the companion anion, [BF4], to further

understand the composition of the surface layer. The ion density profile of [EMIM][BF4]

at the cathode, given in Figure S2 c, shows that the surface layer is composed of a planar

[EMIM] layer between two [BF4] layers. The relatively small size of [BF4] and high planarity

of [EMIM] allows these ions to coexist and form a finer secondary layering of charge, or

sub-layer of charge, within the surface ion layer.
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Surface anions can be treated in a similar manner to the surface cations. For [TFSI] and

[FSI], we use the deviation of the angle between the vector connecting the two S atoms in the

S-N-S bridge from the surface normal as our gauge of configuration. For [BF4], we employ a

dynamic measure of configuration, where the vector between the most distant F-atom and

the central B atom with respect to the surface is used. For [TFSI] and [FSI], we see that

the anions have a high angle state where the anion lies flat on the surface (denoted flat)

and a low angle configuration where the end of the anion interacts with the surface (denoted

perpendicular). Likewise, the [BF4] anions assume configurations with three F-atoms close

to the surface (flat) and those with one or two F-atoms close to the surface (perpendicular).

As shown in Figure S9, the anion angle distribution has a separation such that values > 53o

are considered flat for both [TFSI] and [FSI] and angles < 33o are considered flat for [BF4].

As seen from the Figure 8, the percent of flat anions increases as a function of increasing

potential. At 〈Ψ〉0, [TFSI] and [FSI] have overall high percents of flat anions (∼75 %) that

increases to 90-98 % at high 〈Ψ〉. The [BF4] anion increases from roughly 50 % flat at low

potential to 80 % at high potential. Both the [TFSI] and [FSI] anions assume predominantly

flat configurations at the electrode surface, as previously noted with other potentials61 and

shown pictorially in Figure S7. These anions do not have a highly favorable perpendicular

conformation that moves the negative charge center away from the electrode, with the neg-

ative O and F atoms on the outer shell of the molecules. This is the most likely cause of

their rapid exodus from the anode with decreasing potential, as noted from N in Figure 7.

Again owing primarily to its small size, the [BF4] anion can closely crowd the predominantly

planar [EMIM] cations and incorporate itself into the surface ion layer at the anode, leading

to high value of N for [BF4] at negative potenital; this is supported by the high density close

to the anode given in Figure S2 e.

We see, then, that the Cdl of the three liquids can be closely related to the net change of

surface ion density, δN , as a function of potential, with higher values implying higher values

of capacitance. For [pyr14][TFSI], there are more cations than anions in the 〈Ψ〉0 layer, and
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the present anions assume a flat configuration at the electrode surface. As the potential

is decreased, the flat anions, having negative charge exposed to the electrode, are rapidly

depleted from the surface, while the cation population at the surface does not dramatically

increases but, rather, favors the transition of present cations to have more planar character.

The loss of the few [TFSI] and the addition of few cations lead to an altogether muted

change in δN . At positive potentials, however, there is a steady loss of [pyr14] and a steady

gain in [TFSI] anions that lead to a net larger increase in δN when compared to negative

potentials. While structurally similar though smaller than [pyr14][TFSI], [pyr13][FSI] has

a larger number of both cations and anions in the 〈Ψ〉0 layer. While [FSI] also assumes

primarily flat configurations, their number in the surface layer is suitably large to sustain a

high-rate of anion exit from the anode across our values of ∆Ψ, leading to a larger value of

δN at negative potentials when compared to positive potentials. Finally, [EMIM][BF4] has

a highly planar cation and a small anion that both lead to thin molecular surface layers that

can be closely crowded by their counter-ions. This leads to reordering of the molecules to

create a sub-layering of charge within the ion surface layer being preferred to the rapid gain

or removal a given ion, which results in similar value of δN at both the anode and cathode.

Potential of Zero Charge

An important property related to the structure of the EDL is the potential of zero charge,

which we have previously denoted as 〈Ψ〉0. It is instructive to briefly describe 〈Ψ〉0 in the

context of the total electrostatic potential profile in our interfacial systems at ∆Ψ = 0 V,

shown in Figure S7 of the supplemental material.100 The electrostatic potential is practically

constant about z = 0, where the electrolyte is bulk-like in character, and we thereby refer to

this potential as the bulk potential, 〈Ψ〉B. Alternatively, the potential as z approaches the

electrode deviates from 〈Ψ〉B due to the influence of the interfacial structure. Because our

electrodes are identical, 〈σ〉 = 0 when ∆Ψ = 0, and the potential felt by both electrodes is
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potential of zero charge, 〈Ψ〉0. In general, 〈Ψ〉0 need not be equivalent to 〈Ψ〉B, as potential

of the electrode is highly influenced by ion ordering at the surface.

We provide measures of both 〈Ψ〉0 and 〈Ψ〉B in Table 3. At xLi = 0.0, the values of

〈Ψ〉0 are small and negative for [pyr14][TFSI] and [pyr13][FSI], measuring -0.06 and -0.11 V,

respectively. The value for [EMIM][BF4], on the other hand, is positive, 0.01 V, though close

to zero. The sign of 〈Ψ〉0 for each liquid can be related to the surface ion configuration, shown

in Figure 8. At ∆Ψ = 0 V, both [pyr14][TFSI] and [pyr13][FSI] have a large population,

∼70-80%, of flat surface anions with negative charge centers near the electrode surface and

a relatively low population, ∼15-20%, of planar cations with positive charge centers near the

electrode surface. This leads to the net negative biasing of the electrode, and thus a negative

potential of zero charge, at ∆Ψ = 0 V. The opposite is true for [EMIM][BF4]. Roughly 70%

of [EMIM] cations are in a planar configuration, while only ∼50% of the [BF4] anions are

flat. This leads to the net positive biasing of the electrode, and thus a slightly potential of

zero charge, at ∆Ψ = 0 V.

The bulk potentials for our electrolytes are -0.79 V, -0.01 V, and -0.21 V for neat

[pyr14][TFSI], [pyr13][FSI], and [EMIM][BF4], respectively. Interestingly, the addition of

Li-salt has little influence on 〈Ψ〉0, while its influence on the bulk potential for all elec-

trolytes is more pronounced, with 〈Ψ〉B increasing by roughly 0.1-0.2 V. The decoupling of

〈Ψ〉0 and 〈Ψ〉B under Li-doping implies that Li+ does not strongly perturb the charge density

directly above the electrode surface.

Distribution and Solvation of Li+

Li+ Distribution

We now provide a more detailed analysis of the interaction of Li+ with EDL structure

by mapping out the net ion density (∆ρ ≡ ρ+ − ρ−) as a function of distance from the
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electrode and surface potential, as given in the color maps in Figure 9 d-f. A net abundance

of cations is denoted by the blue region, while a net abundance of anions is given by red

regions. In additional to this, the density of Li+ (ρLi) is given in Figure 9 g-i. For the liquids

having xLi = 0, the double layer structure is clearly visible. The addition of Li+ leads to

more disorder in the layers adjacent to the first ion layer. This is particularly notable in the

second ion layer, which has greater positive character at negative potentials than the case

of the neat liquid. The origin of this effect can be understood though ρLi in Figure 9 g-i,

where there is a strongly localized Li+ signature in the second ionic layer. For larger values

of ∆z, the density of Li+ is less localized, with weak signatures appearing in more distant

cation and anion layers. The surface ion layer, on the other hand has a negligible signature

of Li+, and such behavior explains the previously noted insensitivity of the surface ion layer

properties to Li-salt doping.

To qualitatively understand the aggregation of Li+ in the second ionic layer, we look to the

solvation structure, which is shown in Figure 10 for the representative case of [pyr14][TFSI]

at the positive and negative electrodes. Against the anode, as shown in Figure 10 a, Li+

is solvated primarily in the second ion layer, composed of anions. As a result, a positive

contribution is added into the second anion layer, which results in the second ion layer

having a greater cation contribution, as noted in Figure 9 d-f. At the cathode, as displayed in

Figure 10 b, we see that Li+ resides again in the second ion layer, composed of cations. In this

case, the anions bond to Li+ across the second cation layer. The majority of binding anions

originate from the first ion layer, with the remainder being from the third ion layer. In all

cases, we note that Li+ maintains 4-coordinated, atomically, solvation structure in a similar

manner to bulk systems.79 Energetically speaking, against the anode Li+ must remain in

the second anion layer due to the strong Li/Anion binding, which is 140.5, 139.0, and 142.3

kcal/mol for Li[TFSI], Li[FSI], and Li[BF4], respectively. This binding is much stronger

than that of the ionic liquid pairs, which is 34.34, 82.9, and 117.0 kcal/mol for [pyr14][TFSI],

[pyr13][FSI], and [EMIM][BF4], respectively. Against the cathode, Li+ remains in the second

29



cation layer due to a balance between a strong repulsion to the cathode and sufficient binding

from the first and third anion layers. One would expect such binding to create a barrier to

the translation of Li+ through the EDL surface ion layer.

Li+ Solvation Free Energy

We first focus on obtaining the solvation free energy of Li+ in the z = 0 plane in the

bulk region of the electrolyte at ∆Ψ = 0 V, the values of which are given in Table 4 for the

three electrolytes of interest in the present work. The first step of the thermodynamic cycle

takes neutral Li0 from the gas phase to a solvated state in the z = 0 plane of our model

capacitor. This step of the cycle yields ∆F Li0(g)→Li0(l) values of 4.2, 4.7 and 4.6 kcal/mol

for [pyr14][TFSI], [pyr13][FSI], and [EMIM][BF4], respectively. The solvated Li0 interacts

with the ionic liquid only through repulsive-dispersive interactions, which are unfavorable

with respect to the transition from the gas phase as seen from the positive contributions

to the solvation free energy. The second step of the cycle involves the charging of sol-

vated Li0 to Li+ while simultaneously counter charging an electrode to -1 a.u. The Li+

solvation free energy contribution from this leg of the cycle ∆F Li0(l)→Li+(l), which can be

resolved by removing ∆F edl according to Figure 5, is -105.8, -105.5, and -101.9 kcal/mol for

[pyr14][TFSI], [pyr13][FSI], and [EMIM][BF4], respectively. The electrostatic interactions

introduced by this transition are favorable to solvation and of an order of magnitude larger

than the repulsive-dispersive contribution, leading to a highly favorable values of ∆F s.

Concerning the magnitude of F s shown in Table 4, our values are in general agreement

with previous measures of the solvation of other elemental, monovalent cations into aqueous

solutions.101 The value of Fs for the three electrolytes follows the order [pyr14][TFSI] <

[pyr13][FSI] < [EMIM][BF4], which interestingly follows the trend of Li+ ionic conductivity

and the inverse trend of anion size.79 There is not strictly speaking a previously established

correlation between F s and Li+ conductivity, though one could suppose that a more weakly
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solvated ion would have increased mobility.

With the solvation free energy of Li+ into the bulk in hand, we can now determine the

solvating free energy as a function of distance from the electrode at different values of ∆Ψ.

In this case, we employ our standard two electrode setup with a given value of ∆Ψ applied

between the electrodes, perform MD simulations with Li+ constrained to various z-planes

throughout the EDL, and populate the solvation free energy using the “blue-moon” ensemble

as represented by Eq. 12. The resulting free energies profiles, given in terms of distance from

the electrode surface F s(∆z), are shown in Figure 11 for ∆Ψ values of 0 V and 4.2 V. The

free energy profiles are in line with our expectations from the distribution of Li+ given in

Figure 9 and provide a comparative quantification of barriers to Li+ transport in the EDLs

of the different electrolytes. At the neutral electrode, ∆Ψ = 0 V, we see a 5 kcal/mol

barrier to Li+ motion from ∆z = 7 Å to 5 Å for [pyr14][TFSI], corresponding to motion

from the second molecular layer to the surface ion layer. Such a barrier is not present

in the other electrolyte systems. We can trace this barrier to the fact that, as shown in

Figure 7, [pyr14][TFSI] has a highly cation enriched surface layer that would be unfavorable

to Li+ solvation. Intercalating Li+ with its solvation shell of large [TFSI] anions is also an

unfavorable contribution to translation into the surface ion layer.

Upon applying a potential difference between the electrodes of ∆Ψ = 4.2 V, we find some

consistent trends between the three liquids at the negative electrode. Namely, a 7-8 kcal/mol

barrier to Li+ motion from ∆z = 7 Å to 5 Å evolves for all electrolytes. As with the neutral

electrode with [pyr14][TFSI], this corresponds to motion from the second molecular layer

to the surface ion layer. As the second molecular layer is primarily anions at the negative

electrode, it is highly favorable for Li+ to remain in this layer, hence the barrier to insertion

into the surface ion layer.

Alternatively, at the positive electrode of the system having ∆Ψ = 4.2 V, we see slightly

different behavior between the three liquids. For [pyr14][TFSI] and [EMIM][BF4], a minimum

in Fs evolves around ∆z values of 4-5 Å, and a maximum evolves around 8-10 Å, with

31



the difference between the extrema being 5 kcal/mol and 6 kcal/mol for [pyr14][TFSI] and

[EMIM][BF4], respectively. For [pyr13][FSI], on the other hand, the minimum is clearly

present, but the maximum is much lower than the other liquids, leading to a difference

between the extrema of 2.5 kcal/mol.

For all three electrolytes, the minimum is a reflection of Li+ preferring to remain at the

interface of the anion-rich surface layer and the cation rich second molecular layer. For

example, as can be seen in Figure 10 b, Li+ remains 4-coordinated with 3 O atoms from

the surface ion layer and a monodentate [TFSI] drawn from the third molecular layer, which

represent the free energy well at 4-5 Å. The binding of Li+ with an anion in the third

molecular layer across the adjacent cation layer is unfavorable as it disrupts the segregation

of charge, and the optimum structure mitigates this by requiring only one anion to be inserted

into the layer.

Concerning the maximum in free energy, as Li+ is forced into the second molecular layer

(cation layer) at the positive electrode, its solvating anions are introduced into this layer too.

This is unfavorable and leads to the noted increase in free energy around the 8-10 Å region.

The specific solvation structure of Li+ in each electrolyte, however, changes the magnitude of

the noted maximum. The solvation structure of a Li+ constrained to reside at the maximum

of free energy is shown in Figure 12. For [pyr14][TFSI], we see a surface anion bound to Li+

in a monodentate configuration as well as anions originating from the third molecular layer

bound in monodentate and bidentate configurations. The same anion binding configuration

is noted for [EMIM][BF4], which is unusual as Li+ prefers 4 monodentate [BF4] bond in

the bulk electrolyte. The small size of the anions leads to all three being incorporated into

the cation layer, which is highly unfavorable. Both of these solvation structures lead to the

similar energetic barriers to Li+ translation. On the other hand, [pyr13][FSI] has a much

lower maximum, with Li+ assuming a solvation shell having 4 monodentate anions. The

anions in this case, as seen in Figure 12, are all monodentate, which leads to their negative

charge centers being more removed from the cation layer. This reduces the energetic cost of
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inserting Li+ into the cation layer.

Specific Energy Prediction

This work is fourth in a series78,79,86 of papers focusing on these particular electrolytes,

where we have computed a range of properties from bulk behavior to electronic structure

and interfacial effects. We provide a survey of these properties in Table 5. Specifically, we

quote both bulk properties (i.e. density, viscosity, ionic conductivity, electrochemical win-

dow) as well as interfacial properties (i.e. electrochemical window, capacitance, and specific

energy), with experimental comparisons from our work and others.102–113 Both [pyr13][FSI]

and [emim][BF4] have generally desirable bulk properties, including low viscosity and high

ionic conductivity, which suggest better performance in electrochemical devices where mobil-

ity is key. Concerning interfacial properties, we make predictions of the specific energy, E, of

supercapacitors using our electrolytes. Specific energy is obtained by using the average value

of differential capacitance over our 4 V range (〈Cdl〉) with electrochemical window, ∆Ψmax,

with E = 1
4
〈Cdl〉∆Ψ2

max (the 4 in the denominator corrects for our use of a per electrode

measure of capacitance). For our computational measure of E, we use previously reported

values of ∆Ψmax.86 The value of 〈Cdl〉 and ∆Ψmax are not generally correlated and must

both be large to result in large values of specific energy. Both [pyr13][FSI] and [pyr14][TFSI]

have wide electrochemical windows and large values of specific energy, which suggest stability

at charged electrodes and suitability for capacitor applications. Of the three liquids inves-

tigated, computations and experiments both find [pyr13][FSI] to have the highest specific

energy.

Conclusions
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In the present work we investigate the influence of Li-salt doping on the electric dou-

ble layer formation and capacitance of three ionic liquids ([pyr14][TFSI], [pyr13][FSI], and

[EMIM][BF4]) at 363 K and for 0 ≤ V ∆Ψ ≤ 4.2 V. To represent the interfaces, we use

a dual electrode model, one being the positive and the other being the negative electrode,

with a potential difference imposed on the electrode through the constant-∆Ψ method. Be-

yond typical computations of this nature, the interfaced electrolyte is represented with a

polarizable force field, which has been shown previously to ensure accurate ion density and

alignment at electrified interfaces.85 The differential capacitance is computed using a newly

derived fluctuation formula that yields capacitance as a function of surface potential. The

fluctuation formula is shown to be an effective method to compute differential capacitance,

and further avoids the computational overhead of taking a direct derivative of surface charge

with respect to surface potential, which requires many simulations over a fine ∆Ψ grid to

achieve an accurate result.

While all three liquids have similar EDL formation rates, we see that [pyr13][FSI] has

slightly better overall energy storage characteristics, or lower EDL formation free energy,

than [pyr14][TFSI] or [EMIM][BF4]. Concerning our computations using ideal metallic elec-

trodes, all three liquids exhibit asymmetric differential capacitance about the potential of

zero charge. This is in line with the expected camel-shaped profiles previously observed in

experimental measurements of ionic liquids at metallic electrodes. The addition of Li-salt to

our systems leads to a decrease in asymmetry, likely as a result of the disorder Li+ introduces

into the electric double layer structure. For our experimental measurements on glassy carbon

electrodes, differential capacitance adopts a U-like profile and has a larger magnitude than

our computational results. The differences between theoretical predictions and experiment

underscore the strong influence of electrode surface structure and pseudocapacitive effects

on differential capacitance.

We have mapped out the electric double layer structure, noting the expected alternating

layers of cations and anions from previous studies. The introduction of Li+ leads to EDL
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disorder, which is observable in the differential capacitance as well as the ion density profiles.

One particular aspect of the EDL that is not strongly influenced by the introduction of Li+ is

the composition and structure of the first molecular layer of ions at the surface. We find that

the behavior of the surface ions imparts a great deal of information about the differential

capacitance, namely in describing the overall shape of this quantity. For instance, we find

that regions of higher differential capacitance correspond to greater ion buildup at the surface

and a corresponding alignment that leads to more dense packing.

We have also investigated the distribution of Li+ in the double layer as a function of

potential and have found a strong localization behavior in the second ion layer of the EDL.

At the anode, the localization is a result of the strong anion binding in the second molecular

layer, while at the cathode Li+ resides in the second cation layer and forms bonds with both

the first and third anion layers. Quantifying this behavior, we have performed an in-depth

study of free energy of Li+ in the electric double layer. We compute the free energy of Li+

solvation into the bulk-like region in our model capacitor and perform constrained dynamics

as a function of distance from the electrode to understand solvation free energetic difference

in the double layer. We note that solvation free energy follows the trend of [pyr14][TFSI] <

[pyr13][FSI] < [EMIM][BF4], which is inverse to the size of solvating anions. For electrodes

having a ∆Ψ of 0 V, [pyr14][TFSI] exhibits a 5 kcal/mol barrier to Li+ translation to the

surface ion layer, which originates from cation enrichment of this layer at neutral conditions.

This barrier is not present in the other electrolytes. Concerning the negative electrode of a

system having a ∆Ψ of 4.2 V, a barrier to Li+ insertion into the surface layer occurs due

to favorable anion solvation in the second molecular layer. On the positive electrode, a well

forms near the anion layer at the surface again due to strong Li/anion interactions. Inter-

estingly, the solvation structure of Li+ in the liquids leads to different free energy barriers,

with [pyr13][FSI] exhibiting the smallest barrier due to a more diffuse solvation structure.

Finally, we have reported computational and experimental measures of supercapacitor

specific energy. We have used our computational values of capacitance and, as previously
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reported,86 electrochemical window to predict the value of specific energy on ideal graphite

electrodes. Alternatively, our experiments yield the specific energy on glassy carbon elec-

trodes. Both computations and experiment suggest that [pyr13][FSI] has the highest specific

energy of the three electrolytes investigated here.
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Table 1: Number of cation/anion pairs (NIL), Li+/anion pairs (NLi), and ranges of total
simulation time (tsim) in nanoseconds used for the interface systems.

[pyr14][TFSI] [pyr13][FSI] [EMIM][BF4]

xLi NIL NLi tsim NIL NLi tsim NIL NLi tsim

0.0 113 0 50-65 147 0 45-55 226 0 40-50
0.2 100 25 60-75 134 33 50-60 212 53 40-50
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Table 2: Characteristic formation time of the ionic liquid electric double layer (τ edl) in units
of picoseconds as a function of voltage and Li-salt doping.

τedl

∆Ψ xLi [pyr14][TFSI] [pyr13][FSI] [EMIM][BF4]

2.1 0.0 193 64 33
0.2 368 135 160

4.2 0.0 318 216 48
0.2 395 354 164
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Table 3: Potential of zero charge (〈Ψ〉0) and bulk potential (〈Ψ〉B) in units of millivolts for
the interface systems.

[pyr14][TFSI] [pyr13][FSI] [EMIM][BF4]

xLi 〈Ψ〉0 〈Ψ〉B 〈Ψ〉0 〈Ψ〉B 〈Ψ〉0 〈Ψ〉B

0.00 -61 -794 -112 -12 9 -209
0.20 -54 -641 -109 216 7 37

53



Table 4: Solvation free energies of Li+ (F s) into the ionic liquids electrolytes as resolved into
repulsive-dispersive (∆F Li0(g)→Li0(l)) and electrostatic (∆F Li0(l)→Li+(l)) contributions. Units
are given in kcal/mol.

[pyr14][TFSI] [pyr13][FSI] [EMIM][BF4]

F s -101.6 -100.8 -97.3
∆F Li0(g)→Li0(l) 4.2 4.7 4.6
∆F Li0(l)→Li+(l) -105.8 -105.5 -101.9
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Table 5: Computed and measured physical properties of the electrolytes of interest in the
present work. Shown are density (ρ) in kg/m3, shear viscosity (ηxy) in cP, ionic conductivity
(λ) in mS/cm, electrochemical window (∆Ψmax) in V, average differential capacitance (〈Cdl〉)
over a 4 V window, and specific energy (E) in Wh/m2. Experimental and computational
measures, where not indicated, are taken from previous works.79,86 All properties are room
temperature with the exception of the computed capacitance and specific energy, which taken
from the 363 K simulations employed here.

ρ ηxy λ ∆Ψmax 〈Cdl〉 E

[pyr14][TFSI] Theory 1392 76.6 2.2 4.59-6.53 4.4 0.65-1.30
Exp. 1399102 75.2102 2.8 3.8-6.0107–110 13.9 1.40-3.48

[pyr13][FSI] Theory 1337 47.0 6.0 4.70-6.74 4.5 0.69-1.42
Exp. 1339103 38.9105 8.1 5.3111 27.2 5.3

[EMIM][BF4] Theory 1273 49.8 16.2 3.92-5.46 4.5 0.48-0.93
Exp. 1280104 46.2106 14.3 4.3,4.6107,112,113 9.9 1.27-1.46
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z!

x!

Lz = 10 nm!

Pictorial)view)

Figure 1: Pictorial example of an ionic liquid (0.8[pyr14][TFSI] + 0.2Li[TFSI]) interfaced
with ideal basal-plane graphite electrodes as modeled in the present work. The distance
between the electrodes in the non-periodic z-direction, Lz, is 10 nm. Lithium ions are shown
as enlarged yellow atoms.
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Figure 2: Surface charge density as a function of simulation time for our ionic liquid systems
with the ∆Ψ values of 2.1 and 4.2 V. The initial configurations for these simulations are
obtained from the trajectories of ∆Ψ = 0 V simulations.
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59



-10

-5

0

5

10

�m
� (
µ

Cu
cm

-2
)

-3 -2 -1 0 1 2 3
�^� (V)

0

5

10

15

20

25

6
Eed

l  (k
ca

l·m
ol

-1
·n

m
-2

)

[pyr14][TFSI]
[pyr13][FSI]
[EMIM][BF4]

-3 -2 -1 0 1 2 3
�^� (V)

0

5

10

15

20

-6
Fed

l  (k
ca

l·m
ol

-1
·n

m
-2

)

[pyr14][TFSI]
[pyr13][FSI]
[EMIM][BF4]

-10 -5 0 5 10
�m� (µC·cm-2)

0

5

10

15

20

6
Fed

l  (k
ca

l·m
ol

-1
·n

m
-2

)

[pyr14][TFSI]
[pyr13][FSI]
[EMIM][BF4]

(a)

(c)

xLi = 0.0

xLi = 0.2

(d)
xLi = 0.2

Figure 5: Free energy of EDL formation (∆Fedl) (solid lines) and surface charge (〈σ〉)
(dashed lines) as a function of surface potential (〈Ψ〉) for the three neat ionic liquids of
interest at 363 K. Values of surface charge are included to allow conversion of ∆F edl from a
function of 〈Ψ〉 to 〈σ〉.

60



0

3

6
l(
6

z)
 (n

m
-3

)
Total
[pyr14]
[TFSI]
Li+

0

3

6

l(
6

z)
 (n

m
-3

)

Total
[pyr14]
[TFSI]
Li+

0 25 50
6z (Å)

0

3

6

l(
6

z)
 (n

m
-3

)

0 25 50
6z (Å)

Total
[pyr14]
[TFSI]
Li+

-50-2502550
z (Å)

(a)

(c)

(e)

(b)

(d)

(f)

Figure 6: Average density profiles for ions in [pyr14][TFSI] as a function of distance from
the (a,b) neutral electrode surface at ∆Ψ = 0 V, (c,d) the cathode surface at ∆Ψ = 4.2 V,
and the anode surface at ∆Ψ = 4.2 V. Profiles for both neat [pyr14][TFSI] (a,c,e) as well
as that having xLi = 0.2 (b,d,f) are displayed. Data in (e) is reproduced from a previous
work.85
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(g,h,i) in ionic liquid systems having xLi = 0.2.
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Figure 10: Representative binding of Li+ with anions in the double layer at (a) negative
electrode potential and (b) positive electrode potential. The red and blue bars indicate the
(x,y) plane of the anode and cathode surfaces, respectively.
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(a)!

(b)!

(c)!

Figure 12: Solvation structure of Li+ when inserted into the second ion layer adjacent to
the positive electrode (cation layer). Structures are shown against the positive electrode of
a system have a ∆Ψ of 4.2 V for (a) [pyr14][TFSI], (b) [pyr13][FSI], and (c) [EMIM][BF4].

67



Posi%ve(Electrode(

Nega%ve(Electrode(

1

2

3

4

5

6

C dl
 (µ

F/
cm

2 )
1

2

3

4

5

6

C dl
 (µ

F/
cm

2 )

-3 -2 -1 0 1 2 3
�^�-�^�

0 (V)

1

2

3

4

5

6
C dl

 (µ
F/

cm
2 )

-3 -2 -1 0 1 2 3
�^�-�^�

0 (V)

(a)

(c)

(e)

(b)

(d)

(f)

[pyr14][TFSI]

[pyr13][FSI]

[EMIM][BF4]

0.8[pyr14][TFSI] + 0.2Li[TFSI]

0.8[pyr13][FSI] + 0.2Li[FSI]

0.8[EMIM][BF4] + 0.2Li[BF4]
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referenced to the potential of zero charge found at � = 0 V. Data in (e) is reproduced
from a previous work.85
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Figure S1: Average atomic density profiles for ions in [pyr13][FSI] as a function of distance
from the (a,b) neutral electrode surface at ∆Ψ = 0 V, (c,d) the positive electrode surface
at ∆Ψ = 4.2 V, and the negative electrode surface at ∆Ψ = 4.2 V. Profiles for both neat
[pyr13][FSI] (a,c,e) as well as that having xLi = 0.2 (b,d,f) are displayed.
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Figure S2: Average atomic density profiles for ions in [EMIM][BF4] as a function of distance
from the (a,b) neutral electrode surface at ∆Ψ = 0 V, (c,d) the positive electrode surface
at ∆Ψ = 4.2 V, and the negative electrode surface at ∆Ψ = 4.2 V. Profiles for both neat
[EMIM][BF4] (a,c,e) as well as that having xLi = 0.2 (b,d,f) are displayed.
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Figure S4: Average density profiles of ion centers of mass in [pyr14][TFSI] as a function of
distance from the (a,b) neutral electrode surface at ∆Ψ = 0 V, (c,d) the positive electrode
surface at ∆Ψ = 4.2 V, and the negative electrode surface at ∆Ψ = 4.2 V. Profiles for both
neat [EMIM][BF4] (a,c,e) as well as that having xLi = 0.2 (b,d,f) are displayed.
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Figure S5: Average density profiles of ion centers of mass in [pyr13][FSI] as a function of
distance from the (a,b) neutral electrode surface at ∆Ψ = 0 V, (c,d) the positive electrode
surface at ∆Ψ = 4.2 V, and the negative electrode surface at ∆Ψ = 4.2 V. Profiles for both
neat [pyr13][FSI] (a,c,e) as well as that having xLi = 0.2 (b,d,f) are displayed.
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Figure S6: Average density profiles of ion centers of mass in [EMIM][BF4] as a function of
distance from the (a,b) neutral electrode surface at ∆Ψ = 0 V, (c,d) the positive electrode
surface at ∆Ψ = 4.2 V, and the negative electrode surface at ∆Ψ = 4.2 V. Profiles for both
neat [EMIM][BF4] (a,c,e) as well as that having xLi = 0.2 (b,d,f) are displayed.
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Figure S7: The most common configuration of ionic liquid cations (a,c,e) and anions (b,d,f)
at a negative and positive electrode surface, respectively, having a � of 4.2 V. The red and
blue bars indicate the (x,y) plane of the negative and positive electrode surfaces, respectively.
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Figure S7: The most common configuration of ionic liquid cations (a,c,e) and anions (b,d,f)
at a negative and positive electrode surface, respectively, having a ∆Ψ of 4.2 V. The red and
blue bars indicate the (x,y) plane of the negative and positive electrode surfaces, respectively.
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Figure S8: Distribution of configuration angles for cations in the surface ion layer from neat
ionic liquids at ∆Ψ = 0 and 4.2 V. Given are (a) [pyr14], (b) [pyr13], and (c) [EMIM].
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Figure S9: Distribution of configuration angles for anions in the surface ion layer from neat
ionic liquids at ∆Ψ = 0 and 4.2 V. Given are (a) [TFSI], (b) [FSI], and (c) [BF4].
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